Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Front Mol Neurosci ; 16: 1232447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664243

RESUMO

The extracellular matrix (ECM) is a dynamic structure of molecules that can be divided into six different categories and are collectively called the matrisome. The ECM plays pivotal roles in physiological processes in many tissues, including the nervous system. Intriguingly, alterations in ECM molecules/pathways are associated with painful human conditions and murine pain models. Nevertheless, mechanistic insight into the interplay of normal or defective ECM and pain is largely lacking. The goal of this study was to integrate bulk, single-cell, and spatial RNA sequencing (RNAseq) datasets to investigate the expression and cellular origin of matrisome genes in male and female murine and human dorsal root ganglia (DRG). Bulk RNAseq showed that about 65% of all matrisome genes were expressed in both murine and human DRG, with proportionally more core matrisome genes (glycoproteins, collagens, and proteoglycans) expressed compared to matrisome-associated genes (ECM-affiliated genes, ECM regulators, and secreted factors). Single cell RNAseq on male murine DRG revealed the cellular origin of matrisome expression. Core matrisome genes, especially collagens, were expressed by fibroblasts whereas matrisome-associated genes were primarily expressed by neurons. Cell-cell communication network analysis with CellChat software predicted an important role for collagen signaling pathways in connecting vascular cell types and nociceptors in murine tissue, which we confirmed by analysis of spatial transcriptomic data from human DRG. RNAscope in situ hybridization and immunohistochemistry demonstrated expression of collagens in fibroblasts surrounding nociceptors in male and female human DRG. Finally, comparing human neuropathic pain samples with non-pain samples also showed differential expression of matrisome genes produced by both fibroblasts and by nociceptors. This study supports the idea that the DRG matrisome may contribute to neuronal signaling in both mouse and human, and that dysregulation of matrisome genes is associated with neuropathic pain.

2.
J Bone Miner Res ; 38(11): 1718-1730, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37718532

RESUMO

SNARE proteins comprise a conserved protein family responsible for catalyzing membrane fusion during vesicle traffic. Syntaxin18 (STX18) is a poorly characterized endoplasmic reticulum (ER)-resident t-SNARE. Recently, together with TANGO1 and SLY1, its involvement was shown in ER to Golgi transport of collagen II during chondrogenesis. We report a fetus with a severe osteochondrodysplasia in whom we identified a homozygous substitution of the highly conserved p.Arg10 to Pro of STX18. CRISPR/Cas9-mediated Stx18 deficiency in zebrafish reveals a crucial role for Stx18 in cartilage and bone development. Furthermore, increased expression of multiple components of the Stx18 SNARE complex and of COPI and COPII proteins suggests that Stx18 deficiency impairs antero- and retrograde vesicular transport in the crispant stx18 zebrafish. Taken together, our studies highlight a new candidate gene for a recessive form of osteochondrodysplasia, thereby possibly broadening the SNAREopathy phenotypic spectrum and opening new doors toward future research avenues. © 2023 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osteocondrodisplasias , Peixe-Zebra , Animais , Humanos , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Osteocondrodisplasias/metabolismo , Complexo de Golgi/metabolismo , Cartilagem/metabolismo , Desenvolvimento Ósseo , Transporte Proteico
3.
J Pain ; 24(11): 2063-2078, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37380025

RESUMO

Pain is one of the most important yet poorly understood complaints in heritable connective tissue disorders (HCTDs) caused by monogenic defects in extracellular matrix molecules. This is particularly the case for the Ehlers-Danlos syndrome (EDS), paradigm collagen-related disorders. This study aimed to identify the pain signature and somatosensory characteristics in the rare classical type of EDS (cEDS) caused by defects in type V or rarely type I collagen. We used static and dynamic quantitative sensory testing and validated questionnaires in 19 individuals with cEDS and 19 matched controls. Individuals with cEDS reported clinically relevant pain/discomfort (Visual Analogue Scale ≥5/10 in 32% for average pain intensity the past month) and worse health-related quality of life. An altered somatosensory profile was found in the cEDS group with higher (P = .04) detection thresholds for vibration stimuli at the lower limb, indicating hypoesthesia, reduced thermal sensitivity with more (P < .001) paradoxical thermal sensations (PTSs), and hyperalgesia with lower pain thresholds to mechanical (P < .001) stimuli at both the upper and lower limbs and cold (P = .005) stimulation at the lower limb. Using a parallel conditioned pain modulation paradigm, the cEDS group showed significantly smaller antinociceptive responses (P-value .005-.046) suggestive of impaired endogenous pain modulation. In conclusion, individuals with cEDS report chronic pain and worse health-related quality of life and present altered somatosensory perception. This study is the first to systematically investigate pain and somatosensory characteristics in a genetically defined HCTD and provides interesting insights into the possible role of the ECM in the development and persistence of pain. PERSPECTIVE: Chronic pain compromises the quality of life in individuals with cEDS. Moreover, an altered somatosensory perception was found in the cEDS group with hypoesthesia for vibration stimuli, more PTSs, hyperalgesia for pressure stimuli, and impaired pain modulation.


Assuntos
Dor Crônica , Síndrome de Ehlers-Danlos , Humanos , Hiperalgesia/etiologia , Estudos de Casos e Controles , Hipestesia , Qualidade de Vida , Síndrome de Ehlers-Danlos/complicações , Síndrome de Ehlers-Danlos/diagnóstico
4.
Matrix Biol ; 121: 105-126, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37336269

RESUMO

Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.


Assuntos
Colágeno Tipo I , Osteogênese Imperfeita , Animais , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Osteogênese/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Colágeno/metabolismo , Chaperonas Moleculares/genética , Mutação , Diferenciação Celular
5.
medRxiv ; 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36865307

RESUMO

Pain is one of the most important, yet poorly understood complaints in heritable connective tissue disorders (HCTD) caused by monogenic defects in extracellular matrix molecules. This is particularly the case for Ehlers-Danlos syndromes (EDS), paradigm collagen-related disorders. This study aimed to identify the pain signature and somatosensory characteristics in the rare classical type of EDS (cEDS) caused by defects in type V or rarely type I collagen. We used static and dynamic quantitative sensory testing and validated questionnaires in 19 individuals with cEDS and 19 matched controls. Individuals with cEDS reported clinically relevant pain/discomfort (VAS ≥5/10 in 32% for average pain intensity the past month) and worse health -related quality of life. Altered sensory profile was found in the cEDS group with higher (p=0.04) detection thresholds for vibration stimuli at the lower limb indicating hypoesthesia, reduced thermal sensitivity with more (p<0.001) paradoxical thermal sensations, and hyperalgesia with lower pain thresholds to mechanical (p<0.001) stimuli at both the upper and lower limbs and to cold (p=0.005) stimulation at the lower limb. Using a parallel conditioned pain paradigm, the cEDS group showed significantly smaller antinociceptive responses (p-value between 0.005 and 0.046) suggestive of impaired endogenous central pain modulation. In conclusion, Individuals with cEDS report chronic pain and worse health-related quality of life, and present altered somatosensory perception. This study is the first to systematically investigate pain and somatosensory characteristics in a genetically defined HCTD and provides interesting insights on the possible role of the ECM in the development and persistence of pain.

6.
Hum Genet ; 142(3): 457-476, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36697720

RESUMO

Bi-allelic mutations in the gene coding for human trans-membrane anterior-posterior transformation protein 1 (TAPT1) result in a broad phenotypic spectrum, ranging from syndromic disease with severe skeletal and congenital abnormalities to isolated early-onset cataract. We present here the first patient with a frameshift mutation in the TAPT1 gene, resulting in both bilateral early-onset cataract and skeletal abnormalities, in addition to several dysmorphic features, in this way further expanding the phenotypic spectrum associated with TAPT1 mutations. A tapt1a/tapt1b double knock-out (KO) zebrafish model generated by CRISPR/Cas9 gene editing revealed an early larval phenotype with eye malformations, loss of vision, increased photokinetics and hyperpigmentation, without visible skeletal involvement. Ultrastructural analysis of the eyes showed a smaller condensed lens, loss of integrity of the lens capsule with formation of a secondary lens and hyperplasia of the cells in the ganglion and inner plexiform layers of the retina. Transcriptomic analysis pointed to an impaired lens development with aberrant expression of many of the crystallin and other lens-specific genes. Furthermore, the phototransduction and visual perception pathways were found to be significantly disturbed. Differences in light perception are likely the cause of the increased dark photokinetics and generalized hyperpigmentation observed in this zebrafish model. In conclusion, this study validates TAPT1 as a new gene for early-onset cataract and sheds light on its ultrastructural and molecular characteristics.


Assuntos
Catarata , Cristalino , Animais , Humanos , Catarata/genética , Cristalino/metabolismo , Mutação , Retina/metabolismo , Peixe-Zebra/genética , Proteínas de Membrana/metabolismo
7.
J Invest Dermatol ; 143(3): 386-397.e12, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487918

RESUMO

NRF2 is a master regulator of the antioxidative response that was recently proposed as a potential regulator of extracellular matrix (ECM) gene expression. Fibroblasts are major ECM producers in all connective tissues, including the dermis. A better understanding of NRF2-mediated ECM regulation in skin fibroblasts is thus of great interest for skin homeostasis maintenance and aging protection. In this study, we investigate the impact of NRF2 downregulation on matrisome gene expression and ECM deposits in human primary dermal fibroblasts. RNA-sequencing‒based transcriptome analysis of NRF2 silenced dermal fibroblasts shows that ECM genes are the most regulated gene sets, highlighting the relevance of the NRF2-mediated matrisome program in these cells. Using complementary light and electron microscopy methods, we show that NRF2 deprivation in dermal fibroblasts results in reduced collagen I biosynthesis and impacts collagen fibril deposition. Moreover, we identify ZNF469, a putative transcriptional regulator of collagen biosynthesis, as a target of NRF2. Both ZNF469 silenced fibroblasts and fibroblasts derived from Brittle Corneal Syndrome patients carrying variants in ZNF469 gene show reduced collagen I gene expression. Our study shows that NRF2 orchestrates matrisome expression in human skin fibroblasts through direct or indirect transcriptional mechanisms that could be prioritized to target dermal ECM homeostasis in health and disease.


Assuntos
Matriz Extracelular , Fator 2 Relacionado a NF-E2 , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Expressão Gênica , Fibroblastos/metabolismo , Células Cultivadas
8.
Hum Mutat ; 43(12): 1994-2009, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054293

RESUMO

The Ehlers-Danlos syndromes (EDS) are a heterogeneous group of heritable connective tissue diseases. The autosomal recessive kyphoscoliotic EDS results from deficiency of either lysyl hydroxylase 1 (encoded by PLOD1), crucial for collagen cross-linking; or the peptidyl-prolyl cis-trans isomerase family FK506-binding protein 22 kDa (FKBP22 encoded by FKBP14), a molecular chaperone of types III, IV, VI, and X collagen. This study reports the clinical manifestations of three probands with homozygous pathogenic FKBP14 variants, including the previously reported c.362dupC; p.(Glu122Argfs*7) variant, a novel missense variant (c.587A>G; p.(Asp196Gly)) and a start codon variant (c.2T>G; p.?). Consistent clinical features in the hitherto reported individuals (n = 40) are kyphoscoliosis, generalized joint hypermobility and congenital muscle hypotonia. Severe vascular complications have been observed in 12.5%. A previously unreported feature is microcornea observed in two probands reported here. Both the c.587A>G and the c.362dupC variant cause complete loss of FKBP22. With immunocytochemistry on dermal fibroblasts, we provide the first evidence for intracellular retention of types III and VI collagen in EDS-FKBP14. Scratch wound assays were largely normal. Western blot of proteins involved in the unfolded protein response and autophagy did not reveal significant upregulation in dermal fibroblasts.


Assuntos
Síndrome de Ehlers-Danlos , Escoliose , Humanos , Síndrome de Ehlers-Danlos/genética , Peptidilprolil Isomerase/genética , Homozigoto , Mutação de Sentido Incorreto
9.
JIMD Rep ; 63(5): 462-467, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36101818

RESUMO

The spondylodysplastic type of Ehlers-Danlos syndrome (spEDS) is caused by genetic defects in the B4GALT7 or B3GALT6 genes both deranging the biosynthesis of the glycosaminoglycan linkage region of chondroitin/dermatan sulfate and heparan sulfate proteoglycans. In this study, we have analyzed the linkage regions of urinary chondroitin sulfate proteoglycans of three siblings, diagnosed with spEDS and carrying biallelic pathogenic variants of the B3GALT6 gene. Proteoglycans were digested with trypsin, glycopeptides enriched on anion-exchange columns, depolymerized with chondroitinase ABC, and analyzed by nLC-MS/MS. In urine of the unaffected mother, the dominating glycopeptide of bikunin/protein AMBP appeared as only one dominating (99.9%) peak with the canonical tetrasaccharide linkage region modification. In contrast, the samples of the three affected siblings contained two different glycopeptide peaks, corresponding to the canonical tetrasaccharide and to the non-canonical trisaccharide linkage region modifications in individual ratios of 61/38, 73/27, and 59/41. We propose that the relative distribution of glycosaminoglycan linkage regions of urinary bikunin glycopeptides may serve as a phenotypic biomarker in a diagnostic test but also as a biomarker to follow the effect of future therapies in affected individuals.

10.
Am J Physiol Cell Physiol ; 323(6): C1843-C1859, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993517

RESUMO

Proteoglycans consist of a core protein substituted with one or more glycosaminoglycan (GAG) chains and execute versatile functions during many physiological and pathological processes. The biosynthesis of GAG chains is a complex process that depends on the concerted action of a variety of enzymes. Central to the biosynthesis of heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (CS/DS) GAG chains is the formation of a tetrasaccharide linker region followed by biosynthesis of HS or CS/DS-specific repeating disaccharide units, which then undergo modifications and epimerization. The importance of these biosynthetic enzymes is illustrated by several severe pleiotropic disorders that arise upon their deficiency. The Ehlers-Danlos syndromes (EDS) constitute a special group among these disorders. Although most EDS types are caused by defects in fibrillar types I, III, or V collagen, or their modifying enzymes, a few rare EDS types have recently been linked to defects in GAG biosynthesis. Spondylodysplastic EDS (spEDS) is caused by defective formation of the tetrasaccharide linker region, either due to ß4GalT7 or ß3GalT6 deficiency, whereas musculocontractural EDS (mcEDS) results from deficiency of D4ST1 or DS-epi1, impairing DS formation. This narrative review highlights the consequences of GAG deficiency in these specific EDS types, summarizes the associated phenotypic features and the molecular spectrum of reported pathogenic variants, and defines the current knowledge on the underlying pathophysiological mechanisms based on studies in patient-derived material, in vitro analyses, and animal models.


Assuntos
Dermatan Sulfato , Síndrome de Ehlers-Danlos , Animais , Dermatan Sulfato/metabolismo , Sulfotransferases/metabolismo , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/metabolismo , Síndrome de Ehlers-Danlos/patologia , Colágeno/metabolismo , Proteoglicanas
11.
Clin Exp Rheumatol ; 40 Suppl 134(5): 46-62, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35587586

RESUMO

The vast majority of reported (likely) pathogenic missense variants in the genes coding for the fibrillar collagens leads to the substitution of one of the obligatory glycine residues in the Gly-Xaa-Yaa repeat sequence of the triple helical domain. Their phenotypic consequences and deleterious effects have been well-documented. However, with increasing access to molecular diagnostic testing based on next-generation sequencing techniques, such as sequencing of multi-gene panels and whole-exome sequencing, non-glycine substitutions are more frequently identified in individuals suspected to have a heritable collagen disorder, but their pathogenic effect is often difficult to predict.Some specific non-glycine substitutions in the proα1(I)- (p.(Arg312Cys)) and proα1(III)- (glutamic acid to lysine at different positions) collagen chain have been identified in a number of individuals presenting a phenotype showing features of both classical and vascular Ehlers-Danlos syndrome. The number of reported individuals with these defects is currently very low, and several of these non-glycine substitutions had initially been categorised as variants of unknown significance (VUS), complicating early diagnosis, accurate counselling, management guidelines, and correct classification. This collaborative study reports on the phenotype of 22 and 7 individuals harbouring these rare variants in COL1A1 and COL3A1, respectively, expanding our knowledge on clinical presentation, phenotypic variability, and natural history, and informing on the risk for potentially life-threatening events, such as vascular, gastro-intestinal, and pregnancy-related complications.


Assuntos
Cadeia alfa 1 do Colágeno Tipo I , Síndrome de Ehlers-Danlos , Colágeno , Colágeno Tipo III/genética , Síndrome de Ehlers-Danlos/complicações , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Humanos , Mutação , Fenótipo
12.
Eur J Pain ; 26(6): 1355-1367, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35442549

RESUMO

BACKGROUND: The hypermobile type of Ehlers-Danlos syndrome (hEDS) is a heritable connective tissue disorder, associated with joint hypermobility and prominent chronic pain. Because experimental pain testing in hEDS is scarce, the underlying mechanisms are still poorly understood. OBJECTIVE: The present study assesses endogenous pain facilitation and pain inhibition in hEDS, using a protocol for temporal summation of pain (TSP), conditioned pain modulation (CPM) and exercise-induced hypoalgesia (EIH). METHODS: Twenty women with hEDS and 20 age-matched healthy controls participated. After evaluating thermal and mechanical pain thresholds (PPT), TSP was assessed using 10 repetitive painful pressure stimuli. CPM was provoked using pressure as the test stimulus and hand immersion in hot water (46°) as the conditioning stimulus. EIH was assessed after a submaximal cycling protocol. RESULTS: The hEDS group demonstrated reduced PPTs and showed significantly more TSP after repeated painful stimuli than the control group. In comparison to the healthy control group, the hEDS group demonstrated significantly less EIH at the quadriceps test location. At the trapezius, EIH did not significantly differ between groups. No significant differences were found between the hEDS group and control group in the CPM response. CONCLUSION: The results demonstrate increased TSP in hEDS, suggesting increased central pain facilitation. EIH should be studied more extensively but may be disturbed when evaluated in the muscles that are activated during exercise. The CPM results are inconclusive and require more research. SIGNIFICANCE: Studies regarding the mechanisms that underlie pain in hEDS are scarce, although it is the most prevalent and disabling symptom in this patient population. This study demonstrates increased temporal summation in hEDS and suggests that exercise-induced hypoalgesia may be reduced. Because exercise is a cornerstone in the multidisciplinary treatment of heritable connective tissue disorders, gaining knowledge in this field is important. Pressure stimuli were used to facilitate the international usability of the protocols, allowing for future data acquisition in large cohorts.


Assuntos
Dor Crônica , Síndrome de Ehlers-Danlos , Estudos de Casos e Controles , Síndrome de Ehlers-Danlos/complicações , Feminino , Humanos , Limiar da Dor/fisiologia
13.
Genes (Basel) ; 13(2)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35205310

RESUMO

The Ehlers-Danlos syndromes are a group of multisystemic heritable connective tissue disorders with clinical presentations that range from multiple congenital malformations, over adolescent-onset debilitating or even life-threatening complications of connective tissue fragility, to mild conditions that remain undiagnosed in adulthood. To date, thirteen different EDS types have been recognized, stemming from genetic defects in 20 different genes. While initial biochemical and molecular analyses mainly discovered defects in genes coding for the fibrillar collagens type I, III and V or their modifying enzymes, recent discoveries have linked EDS to defects in non-collagenous matrix glycoproteins, in proteoglycan biosynthesis and in the complement pathway. This genetic heterogeneity explains the important clinical heterogeneity among and within the different EDS types. Generalized joint hypermobility and skin hyperextensibility with cutaneous fragility, atrophic scarring and easy bruising are defining manifestations of EDS; however, other signs and symptoms of connective tissue fragility, such as complications of vascular and internal organ fragility, orocraniofacial abnormalities, neuromuscular involvement and ophthalmological complications are variably present in the different types of EDS. These features may help to differentiate between the different EDS types but also evoke a wide differential diagnosis, including different inborn errors of metabolism. In this narrative review, we will discuss the clinical presentation of EDS within the context of inborn errors of metabolism, give a brief overview of their underlying genetic defects and pathophysiological mechanisms and provide a guide for the diagnostic approach.


Assuntos
Doenças do Tecido Conjuntivo , Síndrome de Ehlers-Danlos , Instabilidade Articular , Erros Inatos do Metabolismo , Anormalidades da Pele , Adolescente , Adulto , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Humanos , Instabilidade Articular/genética , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Anormalidades da Pele/complicações
14.
J Med Genet ; 59(9): 865-877, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34815299

RESUMO

BACKGROUND: Musculocontractural Ehlers-Danlos syndrome is caused by biallelic loss-of-function variants in CHST14 (mcEDS-CHST14) or DSE (mcEDS-DSE). Although 48 patients in 33 families with mcEDS-CHST14 have been reported, the spectrum of pathogenic variants, accurate prevalence of various manifestations and detailed natural history have not been systematically investigated. METHODS: We collected detailed and comprehensive clinical and molecular information regarding previously reported and newly identified patients with mcEDS-CHST14 through international collaborations. RESULTS: Sixty-six patients in 48 families (33 males/females; 0-59 years), including 18 newly reported patients, were evaluated. Japanese was the predominant ethnicity (27 families), associated with three recurrent variants. No apparent genotype-phenotype correlation was noted. Specific craniofacial (large fontanelle with delayed closure, downslanting palpebral fissures and hypertelorism), skeletal (characteristic finger morphologies, joint hypermobility, multiple congenital contractures, progressive talipes deformities and recurrent joint dislocation), cutaneous (hyperextensibility, fine/acrogeria-like/wrinkling palmar creases and bruisability) and ocular (refractive errors) features were observed in most patients (>90%). Large subcutaneous haematomas, constipation, cryptorchidism, hypotonia and motor developmental delay were also common (>80%). Median ages at the initial episode of dislocation or large subcutaneous haematoma were both 6 years. Nine patients died; their median age was 12 years. Several features, including joint and skin characteristics (hypermobility/extensibility and fragility), were significantly more frequent in patients with mcEDS-CHST14 than in eight reported patients with mcEDS-DSE. CONCLUSION: This first international collaborative study of mcEDS-CHST14 demonstrated that the subtype represents a multisystem disorder with unique set of clinical phenotypes consisting of multiple malformations and progressive fragility-related manifestations; these require lifelong, multidisciplinary healthcare approaches.


Assuntos
Anormalidades Múltiplas , Síndrome de Ehlers-Danlos , Anormalidades Múltiplas/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Fenótipo , Sulfotransferases/genética
15.
Am J Med Genet C Semin Med Genet ; 187(4): 429-445, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34797601

RESUMO

Chronic pain is one of the most common, yet poorly studied, complaints in people suffering from Ehlers-Danlos syndromes (EDS). This heterogeneous group of heritable connective tissue disorders is typically characterized by skin hyperextensibility, joint hypermobility, and generalized connective tissue fragility. Most EDS types are caused by genetic defects that affect connective tissue biosynthesis, thereby compromising collagen biosynthesis or fibrillogenesis and resulting in a disorganized extracellular matrix. Even though chronic pain is a major source of disability, functional impairment, and psychosocial suffering in EDS, currently used analgesics and other treatment strategies provide inadequate pain relief and thus represents an important unmet medical need. An important contributor to this is the lack of knowledge about the underlying mechanisms. In this narrative review, we summarize the current understanding of pain and the associated mechanisms in EDS based on clinical studies focusing on questionnaires and experimental pain testing as well as studies in animal models of EDS. In addition, we highlight the challenges, gaps, and opportunities in EDS-pain research.


Assuntos
Doenças do Tecido Conjuntivo , Síndrome de Ehlers-Danlos , Instabilidade Articular , Anormalidades da Pele , Síndrome de Ehlers-Danlos/genética , Humanos , Dor
16.
Front Genet ; 12: 726474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712265

RESUMO

The Ehlers-Danlos syndromes (EDS) are a group of heritable connective tissues disorders mainly characterized by skin hyperextensibility, joint hypermobility and generalized tissue fragility. Currently, 14 EDS subtypes each with particular phenotypic features are recognized and are caused by genetic defects in 20 different genes. All of these genes are involved in the biosynthesis and/or fibrillogenesis of collagens at some level. Although great progress has been made in elucidating the molecular basis of different EDS subtypes, the pathogenic mechanisms underlying the observed phenotypes remain poorly understood, and consequentially, adequate treatment and management options for these conditions remain scarce. To date, several animal models, mainly mice and zebrafish, have been described with defects in 14 of the 20 hitherto known EDS-associated genes. These models have been instrumental in discerning the functions and roles of the corresponding proteins during development, maturation and repair and in portraying their roles during collagen biosynthesis and/or fibrillogenesis, for some even before their contribution to an EDS phenotype was elucidated. Additionally, extensive phenotypical characterization of these models has shown that they largely phenocopy their human counterparts, with recapitulation of several clinical hallmarks of the corresponding EDS subtype, including dermatological, cardiovascular, musculoskeletal and ocular features, as well as biomechanical and ultrastructural similarities in tissues. In this narrative review, we provide a comprehensive overview of animal models manifesting phenotypes that mimic EDS with a focus on engineered mouse and zebrafish models, and their relevance in past and future EDS research. Additionally, we briefly discuss domestic animals with naturally occurring EDS phenotypes. Collectively, these animal models have only started to reveal glimpses into the pathophysiological aspects associated with EDS and will undoubtably continue to play critical roles in EDS research due to their tremendous potential for pinpointing (common) signaling pathways, unveiling possible therapeutic targets and providing opportunities for preclinical therapeutic interventions.

17.
Hum Mutat ; 42(10): 1294-1306, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265140

RESUMO

Classical Ehlers-Danlos syndrome (cEDS) is a heritable connective tissue disorder mainly caused by pathogenic variants in COL5A1 or COL5A2, encoding type V collagen. Its diagnosis, based on clinical criteria and molecular confirmation, can be challenging. We report the molecular and clinical characteristics of 168 probands (72 clinically evaluated at our center) and 65 relatives with a clinical presentation of cEDS. Type V collagen defects were found in 145 probands, 121 (83.5%) were located in COL5A1 and 24 (16.5%) in COL5A2. Although 85.6% of molecularly confirmed patients presented the two major clinical criteria (generalized joint hypermobility, hyperextensible skin with atrophic scarring), significant inter- and intrafamilial phenotypic variability was noted. COL5A2 variants often caused a more severe phenotype. Vascular complications were rare in individuals with type V collagen defects (1.4%). Among the 72 probands clinically evaluated in our center, the mutation detection rate was 82.0%. The majority (68.1%) harbored COL5A1/COL5A2 defects. Yet, 13.9% harbored a defect in another gene (COL1A1, PLOD1, TNXB, AEBP1) highlighting important clinical overlap and the need for molecular confirmation of the diagnosis as this has implications regarding follow-up and genetic counseling. Eighteen percent of the 72 probands remained molecularly unexplained and a COL5A1 variant of unknown significance was identified in 6.9%.


Assuntos
Síndrome de Ehlers-Danlos , Instabilidade Articular , Carboxipeptidases/genética , Colágeno Tipo V/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Humanos , Mutação , Fenótipo , Proteínas Repressoras/genética
18.
Genet Med ; 23(12): 2378-2385, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34272483

RESUMO

PURPOSE: Infantile Caffey disease is a rare disorder characterized by acute inflammation with subperiosteal new bone formation, associated with fever, pain, and swelling of the overlying soft tissue. Symptoms arise within the first weeks after birth and spontaneously resolve before the age of two years. Many, but not all, affected individuals carry the heterozygous pathogenic COL1A1 variant (c.3040C>T, p.(Arg1014Cys)). METHODS: We sequenced COL1A1 in 28 families with a suspicion of Caffey disease and performed ultrastructural, immunocytochemical, and biochemical collagen studies on patient skin biopsies. RESULTS: We identified the p.(Arg1014Cys) variant in 23 families and discovered a novel heterozygous pathogenic COL1A1 variant (c.2752C>T, p.(Arg918Cys)) in five. Both arginine to cysteine substitutions are located in the triple helical domain of the proα1(I) procollagen chain. Dermal fibroblasts (one patient with p.(Arg1014Cys) and one with p.(Arg918Cys)) produced molecules with disulfide-linked proα1(I) chains, which were secreted only with p.(Arg1014Cys). No intracellular accumulation of type I procollagen was detected. The dermis revealed mild ultrastructural abnormalities in collagen fibril diameter and packing. CONCLUSION: The discovery of this novel pathogenic variant expands the limited spectrum of arginine to cysteine substitutions in type I procollagen. Furthermore, it confirms allelic heterogeneity in Caffey disease and impacts its molecular confirmation.


Assuntos
Cadeia alfa 1 do Colágeno Tipo I/genética , Cisteína , Hiperostose Cortical Congênita , Arginina/genética , Pré-Escolar , Colágeno Tipo I , Cisteína/genética , Humanos , Mutação , Pró-Colágeno/genética
19.
JBMR Plus ; 5(3): e10451, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33778321

RESUMO

TANGO1 (transport and Golgi organization-1 homolog) encodes a transmembrane protein, which is located at endoplasmic reticulum (ER) exit sites where it binds bulky cargo, such as collagens, in the lumen and recruits membranes from the ER-Golgi intermediate compartment (ERGIC) to create an export route for cargo secretion. Mice lacking Mia3 (murine TANGO1 orthologue) show defective secretion of numerous procollagens and lead to neonatal lethality due to insufficient bone mineralization. Recently, aberrant expression of truncated TANGO1 in humans has been shown to cause a mild-to-moderate severe collagenopathy associated with dentinogenesis imperfecta, short stature, skeletal abnormalities, diabetes mellitus, and mild intellectual disability. We now show for the first time that complete loss of TANGO1 results in human embryonic lethality with near-total bone loss and phenocopies the situation of Mia3 -/- mice. Whole-exome sequencing on genomic DNA (gDNA) of an aborted fetus of Indian descent revealed a homozygous 4-base pair (4-bp) deletion in TANGO1 that is heterozygously present in both healthy parents. Parental fibroblast studies showed decreased TANGO1 mRNA expression and protein levels. Type I collagen secretion and extracellular matrix organization were normal, supporting a threshold model for clinical phenotype development. As such, our report broadens the phenotypic and mutational spectrum of TANGO1-related collagenopathies, and underscores the crucial role of TANGO1 for normal bone development, of which deficiency results in a severe-to-lethal form of osteochondrodysplasia. © 2021 American Society for Bone and Mineral Research © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

20.
Hum Mutat ; 42(6): 711-730, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33739556

RESUMO

Brittle cornea syndrome (BCS) is a rare autosomal recessive disorder characterized by corneal thinning and fragility, leading to corneal rupture, the main hallmark of this disorder. Non-ocular symptoms include not only hearing loss but also signs of connective tissue fragility, placing it in the Ehlers-Danlos syndrome (EDS) spectrum. It is caused by biallelic pathogenic variants in ZNF469 or PRDM5, which presumably encode transcription factors for extracellular matrix components. We report the clinical and molecular features of nine novel BCS families, four of which harbor variants in ZNF469 and five in PRDM5. We also performed a genotype- and phenotype-oriented literature overview of all (n = 85) reported patients with ZNF469 (n = 53) and PRDM5 (n = 32) variants. Musculoskeletal findings may be the main reason for referral and often raise suspicion of another heritable connective tissue disorder, such as kyphoscoliotic EDS, osteogenesis imperfecta, or Marfan syndrome, especially when a corneal rupture has not yet occurred. Our findings highlight the multisystemic nature of BCS and validate its inclusion in the EDS classification. Importantly, gene panels for heritable connective tissue disorders should include ZNF469 and PRDM5 to allow for timely diagnosis and appropriate preventive measures for this rare condition.


Assuntos
Proteínas de Ligação a DNA/genética , Anormalidades do Olho/genética , Instabilidade Articular/congênito , Anormalidades da Pele/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Anormalidades do Olho/epidemiologia , Anormalidades do Olho/patologia , Família , Feminino , Estudos de Associação Genética , Humanos , Lactente , Instabilidade Articular/epidemiologia , Instabilidade Articular/genética , Instabilidade Articular/patologia , Masculino , Mutação , Linhagem , Anormalidades da Pele/epidemiologia , Anormalidades da Pele/patologia , Sequenciamento do Exoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...